Comparative Study of the Catalytic Activities of Three Distinct Carbonaceous Materials through Photocatalytic Oxidation, CO Conversion, Dye Degradation, and Electrochemical Measurements

نویسندگان

  • Hangil Lee
  • Yeonwoo Kim
  • Min Ji Kim
  • Ki-jeong Kim
  • Byung-Kwon Kim
چکیده

In order to compare the catalytic activities of reduced graphene oxide (rGO), graphene oxide (GO), and graphene, we conducted oxidation of 2-aminothiophenol (2-ATP) and reduction of nitrobenzene (NB) in their presence by using high-resolution photoemission spectroscopy (HRPES). In addition, we determined conversion rates of CO to CO2 in the presence of these catalysts by performing a residual gas analyzer (RGA) under a UHV condition, Orange II and methylene blue degradations UV-vis spectrophotometry, and electrochemistry (EC) measurements in an aqueous solution, as well as by obtaining cyclic voltammograms and determining the change of the condition of electrodes before and after the oxidation of 2-ATP. We found that we can successively fabricate GO (oxidation) and graphene (reduction) from rGO by controlling the oxidation or reduction procedure time and then clearly comparing the critical properties among them as we perform various oxidation and reduction activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPARATIVE MAGNETIC AND PHOTOCATALYTIC PROPERTIES OF COPRECIPITATED ZINC FERRITE NANOPARTICLES BEFORE AND AFTER CALCINATION

In this work, the effects of co-precipitation temperature and post calcination on the magnetic properties and photocatalytic activities of ZnFe2O4 nanoparticles were investigated. The structure, magnetic and optical properties of zinc ferrite nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry and UV–Vis spectrophotometry techniques.  The XRD re...

متن کامل

Microwave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation

In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...

متن کامل

Microwave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation

In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...

متن کامل

Barium Oxide nanoparticles with robust catalytic, photocatalytic and humidity sensing properties

Barium Oxide(BaO) nanoparticles were synthesized by simple co-precipitation method and were investigated by the catalytic activity of synthesized barium oxide nanopaticles was enumerated by epoxidation of styrene. The reaction was carried out and the product was obtained at higher efficiency. Particularly, the photocatalytic efficiency was estimated by degradation of Rhodamine-B (RhB) dye using...

متن کامل

Photocatalytic Mineralization of Methylene BlueAqueous Solutions by Ag/TiO2 Nano Composite

Nanocomposite of Ag/TiO2 and nanocrystalline TiO2 were prepared by using TiCl4 as a precursor in a simple sol-gel process. The prepared photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), energy dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). A complete and effective photocat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016